Abstract

Spherical Li-rich Li1.2Mn0.56Ni0.16Co0.08O2 compound is rapidly synthesized through a facile microwave hydrothermal method followed by a high-temperature solid-state reaction. Homogenous spherical precursor can be precipitated through the microwave hydrothermal (MH) method within 30 min without rigorous coprecipitation condition. The as-prepared Li-rich compound exhibits a hierarchical structure composed of spherical secondary particles (2-3 μm) and small primary particles (150-250 nm) with pores. X-ray diffractometry (XRD) and Brunauer-Emmett-Teller (BET) tests prove that a well-formed layered structure and a large specific surface area containing pores are obtained through the MH method. Such structure is a benefit for the thorough contact between active materials and electrolyte to increase the reactive points. Thus, the as-prepared Li-rich compound exhibits perfect electrochemical performances with a high discharge capacity of 235.6 mAh g(-1) at a current density of 200 mA g(-1). Even at higher current densities of 1000 and 2000 mA g(-1), discharge capacities of 168.6 and 131.2 mAh g(-1) are still maintained, respectively. Furthermore, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic intermittent titration technique (GITT) are carried out to study the material prepared by microwave hydrothermal method. It is considered as an efficient way to synthesize Li-rich compound as cathode material for applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.