Abstract

An increasing number of synthetic drugs are appearing on the illicit market and on the scene of drug use by youngsters. Official figures are underestimated. In addition, immunochemical tests are blind to many of these drugs and appropriate analytical procedures for routine clinical and epidemiological purposes are lacking. Therefore, the perceived increasing abuse of recreational drugs has not been proved yet. In a previous paper, we proposed a procedure for the preliminary screening of several recreational substances in hair and other biological matrices. Unfortunately, this procedure cannot apply to cocaine. Consequently, we performed a new headspace solid-phase microextraction and gas chromatography–mass spectrometry (HS-SPME–GC–MS) procedure for the simultaneous detection of cocaine, amphetamine (A), methamphetamine (MA), methylen-dioxyamphetamine (MDA), methylen-dioxymethamphetamine (MDMA), methylen-dioxyethamphetamine (MDE), N-methyl-1-(1,3-benzodioxol-5-yl)-2-butanamine (MBDB), ketamine, and methadone in human hair. Hair was washed with water and acetone in an ultrasonic bath. A short acid extraction with 1 M hydrochloric acid was needed; the fiber was exposed to a 5 min absorption at 90 °C and thermal desorption was performed at 250 °C for 3 min. The procedure was simple, rapid, required small quantities of sample and no derivatization. Good linearity was obtained over the 0.1–20.0 ng/mg range for the target compounds. Sensitivity was good enough: limits of detection (LOD) were 0.7 ng/mg of hair for the majority of substances. The intra-day precision ranged between 7 and 20%. This paper deals with the analytical performance of this procedure and its preliminary application to hair samples obtained on a voluntary basis from 183 young people (138 males and 45 females) in the Rome area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.