Abstract
A simple paper-based analytical device (PAD) has been developed to rapidly detect formaldehyde (FA) in food samples. The analysis was based on sulfite assay where FA reacted with excess sulfite to generate sodium hydroxide (NaOH) that was quantified on PAD using acid-base titration. The PAD consisted of a central sample zone connected to ten reaction and detection zones. All detection zones were pre-deposited with polyethylene glycol (PEG) with phenolphthalein (Phph) as an indicator. Reaction zones contained different amounts of the titrant, potassium hydrogen phthalate (KHP). On flowing into reaction zones, the NaOH product reacts with KHP to reach the end point. In the presence of excess NaOH, unneutralized NaOH reached the detection zone and caused Phph color change from colorless to pink. In contrast, when NaOH was less than KHP, the detection zone remained colorless. Concentration of FA can be quantified from the number of pink detection zone(s) which were correlated with a known amount of pre-deposited KHP on the PAD. Total analytical process could be completed within 5 min. Areas of each zone and amounts of reagents added to the corresponding zones of the PAD were optimized to obtain reproducible and accurate results. PAD gave ranges of FA detection of 100–1000 mg L−1 with an interval of 100 mg L−1 and the limit of detection (LOD) was 100 mg L−1. PADs were stable for up to a month under dark and cold conditions. Analysis of FA in food samples using PAD agreed well with those from the classical sulfite assay.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.