Abstract
Soluble additives are widely used to control crystallization, leading to a definition of properties including size, morphology, polymorph, and composition. However, because of the number of potential variables in these experiments, it is typically extremely difficult to identify reaction conditions—as defined by solution compositions, temperatures, and combinations of additives—that give the desired product. This article introduces a high-throughput methodology which addresses this challenge and enables the streamlined preparation and characterization of crystalline materials. Using calcium carbonate precipitated in the presence of selected amino acids as a model system, we use well plates as microvolume crystallizers, and an accurate liquid-handling pipetting workstation for sample preparation. Following changes in the solution turbidity using a plate reader delivers information about the reaction kinetics, while semiautomated scanning electron microscopy, powder X-ray diffraction, and Raman microscopy p...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.