Abstract

As extra virgin olive oil (EVOO) has high commercial value, it is routinely adulterated with other oils. The present study investigated the feasibility of rapidly identifying adulterated EVOO using low-field nuclear magnetic resonance (LF-NMR) relaxometry and machine learning approaches (decision tree, K-nearest neighbor, linear discriminant analysis, support vector machines and convolutional neural network (CNN)). LF-NMR spectroscopy effectively distinguished pure EVOO from that which was adulterated with hazelnut oil (HO) and high-oleic sunflower oil (HOSO). The applied CNN algorithm had an accuracy of 89.29%, a precision of 81.25% and a recall of 81.25%, and enabled the rapid (2 min) discrimination of pure EVOO that was adulterated with HO and HOSO in the volumetric ratio range of 10-100%. LF-NMR coupled with the CNN algorithm is a viable candidate for rapid EVOO authentication. © 2020 Society of Chemical Industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call