Abstract

Pathogenic bacteria can be a major cause of illness from environmental sources as well as the consumption of contaminated products, giving rise to public health concerns globally. The surveillance of such living organisms in food and water supplies remains an important challenge in mitigating their deleterious societal effects. Here, we have developed an optimized bioorthogonal non-canonical amino acid tagging approach to the imaging, capture, and interrogation of shigatoxigenic/verotoxigenic Escherichia coli (VTEC) and Listeria that enables the distinction between living wild-type pathogenic bacteria. The approaches utilize homopropargylglycine (HPG), as well as optimized growth media, that restricts endogenous methionine biosynthesis in a variety of species of public health concern. Endogenous methionine residues are then replaced with HPG, which can then be modified using a myriad of compatible bioorthogonal reactions for tagging of exclusively live bacteria. The methods reported allow for the very rapid screening and identification of living pathogenic organisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.