Abstract

The catalytic site of photosynthetic water oxidation, the Mn4CaO5 cluster, in photosystem II (PSII) is known to be formed by a light-induced process called photoactivation. However, details of its molecular mechanism remain unresolved. In this study, we monitored the photoactivation process in cyanobacterial PSII using rapid-scan, time-resolved Fourier transform infrared (FTIR) spectroscopy. The Mn3+/Mn2+ FTIR difference spectra of PSII, in which D1-D170 was specifically 13C labeled, and PSII from the D1-D170A, D1-E189A, and D1-D342A mutants provide strong evidence that the initial Mn2+ is coordinated by D1-D170 and D1-E189. Protein conformational changes and relocation of photo-oxidized Mn3+ in the dark rearrangement process were detected as slow-phase signals in the amide I and carboxylate regions, whereas similar signals were not observed in D1-E189A PSII. It is thus proposed that relocation of Mn3+ via D1-E189 induces the conformational changes of the proteins to form proper Mn binding sites in the mature protein conformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call