Abstract

Abstract Anisotropic hollow fibers allow construction of a dialyzing system that provides extremely large membrane surface in a small laboratory-sized system. Possessing the added property of high ultrafiltration flux, these fibers reduce salt exchange times from days to hours. In this system the exchange of salt by dialytic transport is largely unaffected by recirculation rate, solute type, or content, but is strongly affected by those variables which affect molecular diffusion, such as microsolute size and temperature. In contrast, diafiltration (convective salt removal by ultrafiltration), which primarily relates to solvent transport through the membrane, can be changed by operating pressure, polarizability of the macrosolute, as well as those conditions which tend to influence this latter phenomenon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.