Abstract

In this study, a lightweight prestressed steel jacket (PSJ) was proposed and developed for rapid and cost-effective repair of a severely damaged circular reinforced concrete column. The PSJ is composed of several prestressed strands, and a thin steel sheet is restrained by these strands, which can be manually wrapped around and jointed to form a jacket on the column as part of a 12-h repair job by two workers. The prestressed strands restrain the thin sheet from buckling, while the steel sheet in turn prevents the strands from cutting into cracked concrete and thus preserves the prestressing forces. The PSJ was validated with cyclic (reversed) testing of two large-scale columns with lap-splice deficiency under incrementally increased displacements every three cycles. The ultimate strength and displacement ductility of the damaged column were restored to 115% and 140%, respectively, of those of the as-built column. The initial stiffness of the damaged column, however, was restored to only 84% of that of the as-built column because the PSJ was designed to restore the strength and ductility only. By connecting the damaged column to its footing through anchored dowel bars, the levels of restoration in ultimate strength, initial stiffness, and displacement ductility were all increased by at least 20%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.