Abstract

Iron oxide nanoadsorbents are cost-effective adsorbents that provide high adsorption capacity, rapid adsorption rate and simple separation and regeneration. In this study, Fe3O4 nanoadsorbents have been employed for the removal of Pb(II) ions from aqueous solutions by a batch-adsorption technique. The effects of contact time, initial concentration of Pb(II) ions, temperature, solution pH and coexisting ions on the amount of Pb(II) adsorbed have been investigated. Pb(II) adsorption was fast, and equilibrium was achieved within 30min. The amount of Pb(II) adsorbed increased as temperature increased, suggesting an endothermic adsorption. The optimal pH value for Pb(II) adsorption was around 5.5. Furthermore, the addition of coexisting cations such as Ca2+, Ni2+, Co2+, and Cd2+ has no remarkable influence on Pb(II) removal efficiency. The adsorption equilibrium data fitted very well to Langmuir and Freundlich adsorption isotherm models. The thermodynamics of Pb(II) adsorption onto the Fe3O4 nanoadsorbents indicated that the adsorption was spontaneous, endothermic and physical in nature. The desorption and regeneration studies have proven that Fe3O4 nanoadsorbents can be employed repeatedly without impacting its adsorption capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.