Abstract

Post-natal development comprises both maturation (from newborn to adult) and ageing (from adult to senility) and, during this phase, several adaptive mechanisms occur in sympathetic ganglia, albeit they are not fully understood. Therefore, the present study aimed at detecting whether post-natal development would exert any effect on the size and number of a guinea pig's superior cervical ganglion (SCG) neurons. Twenty right SCGs from male subjects were used at four ages, i.e. newborn (7 days), young (30 days), adult (7 months) and old animals (50 months). Using design-based stereological methods the volume of ganglion and the total number of mononucleate and binucleate neurons were estimated. Furthermore, the mean perikaryal volume of mononucleate and binucleate neurons was estimated using the vertical nucleator. The main findings of this study were a combination of post-natal-dependent increases and decreases in some variables: (i) 27% increase in ganglion volume, (ii) 24% and 43% decreases in the total number of mono and binucleate neurons, respectively, and (iii) 27.5% and 40% decreases in the mean perikaryal volume of mono and binucleate neurons, respectively. Despite the fall in neuron numbers found here, post-natal development is not only associated with neuron loss, but also embraces other structural adaptive mechanisms, which are discussed in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.