Abstract

In this study, a series of novel metal organic framework based composite materials was synthesized using a facile combustion synthesis method. The synthesized materials were characterized using standard analytical techniques for crystallite size, surface functional groups, surface area, porosity, optical properties, and particle size. The increase in the amount of CuO in the composite material resulted decrease in surface area and pore volume. The band-gap energy of the synthesized composites reduced with increase in the amount of CuO. Among the composite, 0.9 CuO:0.1 MIL displayed least emission intensity indicating lower electron-hole recombination and thereby superior charge separation of the material. The increase in the amount of CuO NPs in the composite resulted in increase in the average particle size and decrease in the zeta potential.As an application, the NaBH4-mediated reduction of Methyl orange dye was studied using the synthesized materials. The increased amount of CuO in the composite resulted in the higher activity of the material. Highest activity was observed with the composite containing 9:1 ratio of CuO and MIL, and this material was further used to investigate the reduction of methylene blue, Rhodamine B, 4-nitrophenol, 2-nitrophenol, and 2, 4-dichlorophenol. The material exhibited excellent activity for all the selected organic pollutants. Finally, the composite containing 9:1 ratio of CuO and MIL was employed for the reduction of a real-time industry effluent and the observed results were encouraging. The reusability aspect of the synthesized material was investigated. Based on the LC-MS analysis, a possible reduction mechanism is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call