Abstract

A "deterministic learning" theory was recently proposed for identification, representation and rapid recognition of multi-variable dynamical patterns with full-state measurements. In this paper, it will be shown that for a class of single-variable dynamical patterns with only output measurements, identification, representation and rapid recognition can be achieved via the deterministic learning theory and state observation techniques. Firstly, the system dynamics of a set of training single-variable dynamical pattern can be locally-accurately identified through high-gain observation and deterministic learning. Secondly, a single-variable dynamical pattern is represented in a time-invariant and spatially-distributed manner via deterministic learning. This representation is a kind of static, graph-based representation. A set of nonlinear observers are then constructed as dynamic representatives of the training dynamical patterns. Thirdly, rapid recognition of a test single-variable dynamical pattern can be implemented when non-high-gain state observation is achieved according to a kind of internal and dynamical matching on system dynamics. The observation errors can be taken as the measure of similarity between the test and training dynamical patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call