Abstract

ABSTRACTRecently, compressive sensing (CS) has offered a new framework whereby a signal can be recovered from a small number of noisy non-adaptive samples. This is now an active area of research in many image-processing applications, especially super-resolution. CS algorithms are widely known to be computationally expensive. This paper studies a real time super-resolution reconstruction method based on the compressive sampling matching pursuit (CoSaMP) algorithm for hyperspectral images. CoSaMP is an iterative compressive sensing method based on the orthogonal matching pursuit (OMP). Multi-spectral images record enormous volumes of data that are required in practical modern remote-sensing applications. A proposed implementation based on the graphical processing unit (GPU) has been developed for CoSaMP using computed unified device architecture (CUDA) and the cuBLAS library. The CoSaMP algorithm is divided into interdependent parts with respect to complexity and potential for parallelization. The proposed implementation is evaluated in terms of reconstruction error for different state-of-the-art super-resolution methods. Various experiments were conducted using real hyperspectral images collected by Earth Observing-1 (EO-1), and experimental results demonstrate the speeding up of the proposed GPU implementation and compare it to the sequential CPU implementation and state-of-the-art techniques. The speeding up of the GPU-based implementation is up to approximately 70 times faster than the corresponding optimized CPU.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.