Abstract

Therapeutic monoclonal antibodies (mAbs) provide effective treatments for many diseases, including cancer, autoimmune disorders, and, lately, COVID-19. Monitoring the concentrations of mAbs is important during their production and subsequent processing. This work demonstrates a 5 min quantitation of most human immunoglobulin G (IgG) antibodies through capture of mAbs in membranes modified with ligands that bind to the fragment crystallizable (Fc) region. This enables binding and quantitation of most IgG mAbs. Layer-by-layer (LBL) adsorption of carboxylic acid-rich polyelectrolytes in glass-fiber membranes in 96-well plates allows functionalization of the membranes with Protein A or a peptide, oxidized Fc20 (oFc20), with high affinity for the Fc region of human IgG. mAb capture occurs in <1 min during the flow of solutions through modified membranes, and subsequent binding of a fluorophore-labeled secondary antibody enables quantitation of the captured mAbs using fluorescence. The intra- and inter-plate coefficients of variations (CV) are <10 and 15%, respectively, satisfying the acceptance criteria for many assays. The limit of detection (LOD) of 15 ng/mL is on the high end of commercial enzyme-linked immunosorbent assays (ELISAs) but certainly low enough for monitoring of manufacturing solutions. Importantly, the membrane-based method requires <5 minutes, whereas ELISAs typically take at least 90 min. Membranes functionalized with oFc20 show greater mAb binding and lower LODs than membranes with Protein A. Thus, the membrane-based 96-well-plate assay, which is effective in diluted fermentation broths and in mixtures with cell lysates, is suitable for near-real-time monitoring of the general class of human IgG mAbs during their production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.