Abstract

We have designed a common-mode interferometric acousto-optic pulse shaper that is capable of shaping individual pulses differently from a mode-locked laser. The design enables the measurement of weak nonlinear optical signals such as two-photon absorption and self-phase modulation at megahertz rates. The experimental apparatus incorporates homodyne detection as a means of resolving the phase of the detected signals. The fast data acquisition rate and the ability to perform measurements in scattering media make this experimental apparatus amenable to imaging applications analogous to measurements of two-photon fluorescence using a mode-locked laser.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.