Abstract

This paper presents the FPGA implementation of the prototype for the Data-Driven Chip-Multiprocessor (D2-CMP). In particular, we study the implementation of a Thread Synchronization Unit (TSU) on FPGA, a hardware unit that enables thread execution using dataflow-like scheduling policy on a chip multiprocessor. Threads are scheduled for execution based on data availability, i.e., a thread is scheduled for execution only if its input data is available. This model of execution is called the non-blocking Data-Driven Multithreading (DDM) model of execution. The DDM model has been evaluated using an execution driven simulator. To validate the simulation results, a 2-node DDM chip multiprocessor has been implemented on a Xilinx Virtex-II Pro FPGA with two PowerPC processors hardwired on the FPGA. Measurements on the hardware prototype show that the TSU can be implemented with a moderate hardware budget. The 2-node multiprocessor has been implemented with less than half of the reconfigurable hardware available on the Xilinx Virtex-II Pro FPGA (45% slices), which corresponds to an ASIC equivalent gate count of 1.9 million gates. Measurements on the prototype showed that the delays incurred by the operation of the TSU can be tolerated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call