Abstract

Fully-integrated electro-fluidic systems with micro-/nano-scale features have a wide range of applications in lab-on-a-chip systems used for biosensing, biological sample processing, and environmental monitoring. Rapid prototyping of application-specific electro-fluidic systems is envisioned to facilitate the testing, validation, and market translation of several lab-on-a-chip systems. Towards this goal, we developed a rapid prototyping process for creating wrinkled micro-/nano-textured electrodes on shrink memory polymers, fabricating microfluidics using molds patterned by a craft-cutter, and bonding electrical and fluidic circuitries using a PDMS partial curing method optimized for creating void-free bonds at the side walls and surfaces of tall (>5 μm) micro-/nano-textured wrinkled electrodes. The resulting electro-fluidic devices, featuring closely spaced high topography electrodes for electrochemical analysis, can withstand flow-rates and burst pressures larger than 25 mL min(-1) and 125 kPa, respectively. In addition, the fully-integrated electrochemical flow-cell developed here demonstrates excellent electrochemical behaviour, with negligible scan to scan variation for over 100 cyclic voltammetry scans, and expected redox signatures measured under various voltage scan rates and fluidic flow rates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call