Abstract

We report automated fabrication of solid-contact sodium-selective (Na+-ISEs) and potassium-selective electrodes (K+-ISEs) using a 3D printed liquid handling robot controlled with Internet of Things (IoT) technology. The printing system is affordable and can be customized for the use with micropipettes for applications such as drop-casting, biological assays, sample preparation, rinsing, cell culture, and online analyte monitoring using multi-well plates. The robot is more compact (25 × 30 × 35 cm) and user-friendly than commercially available systems and does not require mechatronic experience. For fabrication of ion-selective electrodes, a carbon black intermediate layer and ion-selective membrane were successively drop-cast on the surface of stencil-printed carbon electrode using the dispensing robot. The 3D-printed robot increased ISE robustness while decreasing the modification time by eliminating manual steps. The Na+-ISEs and K+-ISEs were characterized for their potentiometric responses using a custom-made, low-cost (<$25) multi-channel smartphone-based potentiometer capable of signal processing and wireless data transmission. The electrodes showed Nernstian responses of 58.2 ± 2.6 mV decade−1 and 56.1 ± 0.7 mV decade−1 for Na+ and K+, respectively with an LOD of 1.0 × 10−5 M. We successfully applied the ISEs for multiplexed detection of Na+ and K+ in urine and artificial sweat samples at clinically relevant concentration ranges. The 3D-printed pipetting robot cost $100 and will pave the way for more accessible mass production of ISEs for those who cannot afford the expensive commercial robots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call