Abstract

A method of rapid prototyping of electrically conductive components is described. The method is based on 3D printing technology. The prototyped model is made of plaster-based powder bound layer-by-layer by an inkjet printing of a liquid binder. The resulting model is highly porous and can be impregnated by various liquids. In a standard prototyping process, the model is impregnated by epoxy or polyurethane resin, wax solution, etc. In the test described in this paper, to obtain the electric conductivity, the model has been impregnated by a dispersion of carbon nanofibers (CNF) in epoxy resin. Surface resistivity of the model below 800 Ω/sq has been obtained when impregnated by a mixture containing less than 4 wt.% CNF. Volume resistivity of the molded and hardened CNF dispersion used for model impregnation have also been measured and a value less than 200 Ω cm has been obtained at 3 wt.% CNF content. Unexpectedly, the onset of electric conductivity (percolation threshold) occurred at lower mass fraction of CNF for a dispersion containing CNF agglomerates, when compared to the mixture with well uniformly dispersed fibers. This happened both for the impregnated model and for the molded CNF dispersion itself. An explanation of this phenomenon, based on percolation theory is given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.