Abstract

Many cellular activities, such as cell migration, cell division, phagocytosis, and exo-endocytosis, generate and are regulated by membrane tension gradients. Membrane tension gradients drive membrane flows, but there is controversy over how rapidly plasma membrane flow can relax tension gradients. Here, we show that membrane tension can propagate rapidly or slowly, spanning orders of magnitude in speed, depending on the cell type. In a neuronal terminal specialized for rapid synaptic vesicle turnover, membrane tension equilibrates within seconds. By contrast, membrane tension does not propagate in neuroendocrine adrenal chromaffin cells secreting catecholamines. Stimulation of exocytosis causes a rapid, global decrease in the synaptic terminal membrane tension, which recovers slowly due to endocytosis. Thus, membrane flow and tension equilibration may be adapted to distinct membrane recycling requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call