Abstract

This study deals with the effects of curing treatment with gaseous and supercritical carbon dioxide on the properties of cement-bonded particleboard (CBP) manufactured by the conventional cold-pressing method. The hydration of cement and the mechanism of improvement were examined using X-ray diffractometry (XRD), thermal gravimetry (TG-DTG), and scanning electron microscopy (SEM) observations. The results are as follows: (1) The curing of cement was accelerated concomitantly with the improvement in mechanical and dimensional properties of CBP significantly by curing with gaseous or supercritical carbon dioxide. (2) Supercritical carbon dioxide curing imparted boards optimal properties at a faster rate than did gaseous curing. (3) Accelerated formation of calcium silicate hydrate and calcium carbonate and the interlocking of those hydration products on the wood surface are potentially the main reasons for the superior strength of carbon dioxide-cured boards.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call