Abstract

Rapid and accurate estimation of a material's stab-resistance performance is important for the design of personal protective clothing. In this work, the stab-resistance performance was investigated and compared on five commercially used polymers—PA (polyamide) 6, PA11, PA12, PC (polycarbonate), and PE (polyethylene)—by conducting impact tests as described in the GA 68-2008 National Standard. The relationship between the penetration depth and impact energy was studied. Rockwell hardness tests, shear strength tests, and 3D tomography observations were performed to characterize the response mechanisms of the five polymers. The process of a knife impacting a substrate was described and verified. It was revealed that the surface hardness and shear strength were the key mechanical properties that affected the overall stab-resistance performance. A theoretical model was proposed, which combined the mechanical properties to quantitatively predict the material's response behavior under a knife impact, and it was validated with a prediction error between 5% and 20%. The results can be used in the selection process of stab-resistant candidates and predicting the knife-penetration performances of different materials under various impact energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.