Abstract

Photosynthetic pigments perform critical physiological functions in tea plants. Their content is an essential indicator of photosynthetic efficiency and nutritional status. The present study aimed to predict chlorophyll a (Chl a), chlorophyll b (Chl b), total chlorophyll (total Chl), and carotenoid (Car) content in tea leaves under different levels of nitrogen treatment using hyperspectral imaging (HSI) in combination with variable selection algorithms. A total of 150 samples were collected and scanned using the HSI system. The mean spectrum in the region of interest (ROI) was extracted, and the pigment content was measured by traditional chemical methods. Five and seven optimal wavelengths (OWs) were selected using the regression coefficients (RCs) of partial least squares regression (PLSR) and the second-derivative (2-Der), respectively. The optimal 2-Der-PLSR models for Chl a, Chl b, total Chl, and Car performed remarkably well based on seven OWs with correlation coefficients of prediction (RP ) of 0.9337, 0.9322, 0.9333 and 0.9036, root mean square errors in prediction (RMSEP) of 0.1100, 0.0511, 0.1620, and 0.0300 mg g-1 , respectively. The results of this study revealed that HSI combined with variable selection method can be employed as a rapid and accurate method for predicting the content of pigments in tea plants. © 2018 Society of Chemical Industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.