Abstract

The rising concentration of organic micro-pollutants (OMPs) in water resources has become a major concern for aquatic ecosystems and human health. Advanced oxidation processes (AOPs), based on ultraviolet (UV) photolysis and photochemical reactions, have been suggested for the degradation of various micropollutants present in water and wastewater. However, the application of these methods on large scale is limited due to the long treatment times. Here we evaluate the efficiency of high-intensity pulsed light treatment (HIPL) for the degradation of organic compounds in aqueous conditions. A solution containing 11 OMPs was treated with short (<2 ms) and high-intensity light pulses produced by a Xenon flash lamp. It was observed that the HIPL parameters, such as the number of pulses and optical energy dose, have a significant impact on the efficiency of the treatment. The main advantage of HIPL is the fast kinetics that allows efficient photodegradation of OMPs from the aqueous solution rapidly and within milliseconds. The present work showcases the potential of HIPL technique for the post-treatment of contaminated water containing pharmaceuticals and endocrine disruptor compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call