Abstract

The dynamical evolution of a system of integrate-and-fire units with delayed excitatory coupling is analyzed. The connectivity is arbitrary except for a normalization of the total input to each unit. It is shown that the system converges to a periodic solution where all units are phase locked but do not necessarily fire in unison. In the case of discrete and uniform delays, a periodic solution is reached after a finite time. For a delay distribution with finite support, an attractor is, in general, only reached asymptotically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.