Abstract

Passive catheter tracking guidance by MRI is a promising approach for endovascular therapy that may have several clinical advantages over the more frequently employed active MR approaches. However, real-time MR passive tracking is problematic because it is difficult to have an image update rate >1 Hz and preserve adequate spatial and image contrast resolution. One solution for improving real-time temporal performance is the use of nonsymmetric truncated k-space sampling strategies, which acquire only a fraction of the data in both the readout and phase-encoding directions. This article investigated these acquisition strategies in combination with using (a) multicycle projection dephaser (mcPD) gradients for background suppression and (b) the projection-onto-convex sets (POCS) algorithm to reconstruct the images. The use of mcPD gradients allowed the data sampling strategies to exploit the k-space energy structure of the catheter, and POCS allowed reconstruction of high-quality MR images that were suitable for real-time passive catheter tracking and demonstrated improved geometric representations of catheter width and tip position compared to zero filling. The use of nonsymmetric truncated k-space reduced the total acquisition time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.