Abstract
The knowledge of solute concentration throughout a batch crystallization process is essential from process control perspective. Despite the progress in process analytical technology (PAT), there still exist several challenges for online measurement of solute concentration at industrial scale. In this study, concentration monitoring was realized using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy at lab as well as semi-industrial scale. Applications of the calibration model developed at lab scale for the measurements at the semi-industrial scale however resulted into strongly biased concentration predictions, caused by the differences in the curvature of fiber optics and the uneven thermal expansion of the probe. Therefore an alternative rapid online calibration method was developed during the start-up phase of the process. With this method, the time required for developing a working calibration model for concentration monitoring during crystallization of ammonium sulphate in a semi-industrial scale draft tube crystallizer has been reduced approximately by 90%. With the help of simultaneous concentration and crystal size distribution measurements at semi-industrial scale, the descriptive capability of the model was improved due to better kinetic parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.