Abstract
Sintered nanocopper (nanoCu) paste, exhibiting excellent electrical, thermal, and mechanical performances, offers promise for interconnections in wide bandgap (WBG) semiconductors operating at higher temperatures. However, sintered nanoCu is prone to severe corrosion in environments containing H2S, with on-site characterization methods for the composition of corrosion products currently lacking. In this study, a novel method was proposed for the rapid characterization of corrosion products during the corrosion process based on hyperspectral imaging (HSI) technology. Sintered nanoCu samples were subjected to 336 h H2S gas corrosion tests with bulk Cu as the reference, followed by correlating the corrosion element content with hyperspectral characteristic parameters. Then, the morphology and composition of corrosion products were researched using focused ion beam scanning electron microscope (FIB-SEM) and transmission electron microscope (TEM) analysis. The results showed that (1) during the corrosion process, a linear relationship was established between the Cu, O elemental atomic contents on the sample surfaces and their hyperspectral characteristic parameters. (2) The elemental atomic content of S exhibited an exponential relationship with the characteristic parameter. (3) The change rate in the spectral characteristic parameters during the corrosion process reflected the severity of corrosion, which was confirmed by comparing the thickness of the corrosion products of the sintered nanoCu and bulk Cu. This study offers a foundation for the further investigation of rapid on-site characterization of sintered nanoCu corrosion involving H2S.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.