Abstract

In many practical applications, spatial data are often collected at areal levels (i.e., block data), and the inferences and predictions about the variable at points or blocks different from those at which it has been observed typically depend on integrals of the underlying continuous spatial process. In this paper, we describe a method based on Fourier transforms by which multiple integrals of covariance functions over irregular data regions may be numerically approximated with the same level of accuracy as traditional methods, but at a greatly reduced computational expense.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.