Abstract

Aldosterone elevates Na+/K+/2Cl- cotransporter activity in rabbit cardiomyocytes within 15 min, an effect blocked by K-canrenoate and thus putatively mineralocorticoid receptor mediated. Increased cotransporter activity raises intracellular [Na+] sufficient to produce a secondary increase in Na+-K+ pump activity; when this increase in intracellular [Na+] is prevented, a rapid effect of aldosterone to lower pump activity is seen. Addition of transcription inhibitor actinomycin D did not change basal or aldosterone-induced lowered pump activity, indicating a direct, nongenomic action of aldosterone. We examined a possible role for protein kinase C (PKC) in the rapid nongenomic effects of aldosterone. Single ventricular myocytes and pipette solutions containing 10 mm intracellular [Na+] were used in patch clamp studies to measure Na+-K+ pump activity. Aldosterone lowered pump current, an effect abolished by epsilon PKC (epsilonPKC) inhibition but neither alphaPKC nor scrambled epsilonPKC; addition of epsilonPKC activator peptide mimicked the rapid aldosterone effect. In rabbits chronically infused with aldosterone, the lowered pump current in cardiomyocytes was acutely (< or =15 min) restored by epsilonPKC inhibition. These studies show that rapid effects of aldosterone on Na+-K+ pump activity are nongenomic and specifically epsilonPKC mediated; in addition, such effects may be prolonged (7 d) and long-lived ( approximately 4 h isolated cardiomyocyte preparation time). The rapid, prolonged, long-lived effects can be rapidly (< or =15 min) reversed by epsilonPKC blockade, suggesting a hitherto unrecognized complexity of aldosterone action in the heart and perhaps by extension other tissues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.