Abstract

Vasopressin (VP) and oxytocin (OT) are involved in modulating basic physiology and numerous social behaviors. Although the anatomical distributions of nonapeptide neurons throughout development have been described, the functional roles of VP and OT neurons during development are surprisingly understudied, and it is unknown whether they exhibit functional changes throughout early development. We utilized an acute social isolation paradigm to determine if VP and OT neural responses in eight nonapeptide cell groups differ at three different stages of early development in prairie voles. We tested pups at ages that are representative of the three rapid growth stages of the developing brain: postnatal day (PND)2 (closed eyes; poor locomotion), PND9 (eye opening; locomotion; peak brain growth spurt), and PND21 (weaning). Neural responses were examined in pups that (1) were under normal family conditions with their parents and siblings, (2) were isolated from their parents and siblings and then reunited, and (3) were isolated from their parents and siblings. We found that VP and OT neural activity (as assessed via Fos co-localization) did not differ in response to social condition across development. However, remarkably rapid VP and OT synthesis in response to social isolation was observed only in the paraventricular nucleus of the hypothalamus (PVN) and only in PND9 pups. These results suggest that PVN nonapeptide neurons exhibit distinct cellular properties during a critical period of development, allowing nonapeptide neurons to rapidly upregulate peptide production in response to stressors on a much shorter timescale than has been observed in adult animals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.