Abstract
Robinia pseudoacacia L. is a legume species that is widely used in afforestation, which has high N2 fixation capacity and rapid growth rate. Both nitrogen (N) supply and phenology affect plant growth, photosynthesis and leaf senescence. The aim of this study was to determine how N supply affects N2 fixation, leaf photosynthesis and senescence of R. pseudoacacia at different phenological stages. Seedlings of R. pseudoacacia were supplied with different levels of 15N-labelled NH4NO3 solution, with seedlings of Sophora japonica Linn. as reference plants to calculate the percentage of N derived from the atmospheric N2 (%Ndfa). Compared with plants supplied with a high N level, those with a low N supply had a higher %Ndfa at an early developmental stage. Nitrogen fixation compensated the effect of a low N supply on plant growth in R. pseudoacacia. A high N supply decreased biomass allocation to lateral roots and nodules, and increased the relative growth rate of plant height as well as specific leaf area. The eighth mature compound leaf of R. pseudoacacia tended to have a higher net photosynthetic rate than the fourth leaf, and the leaves still maintained a moderate photosynthetic rate in early autumn. Plants tended to allocate more biomass to leaves at an early developmental stage and to stems and roots at a later developmental stage (3 months old). The N level did not affect leaf photosynthesis at different phenological stages, primarily due to (i) a high %Ndfa under low N supply at early growing stage, and a similar high %Ndfa under all N supplies at a late growing stage, and (ii) the delayed greening phenotype of expanding leaves to save nutrients for mature leaves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.