Abstract

Skeletal muscles, especially weight-bearing muscles, are very sensitive to changes in loading state. The aim of this paper was to characterize the dynamic changes in the unloaded soleus muscle in vivo following a short bout of hindlimb suspension (HS), testing the hypothesis that transcriptional events respond early to the atrophic stimulus. In fact, we observed that after only 1 day of HS, primary transcript levels of skeletal alpha-actin and type I myosin heavy chain (MHC) genes were significantly reduced by more than 50% compared with ground control levels. The degree of the decline for the mRNA expression of actin and type I MHC lagged behind that of the pre-mRNA levels after 1 day of HS, but by 2 and 7 days of HS, large decreases were observed. Although the faster MHC isoforms, IIx and IIb, began to be expressed in soleus after 1 day of HS, a relatively significant shift in mRNA expression from the slow MHC isoform type I toward these fast MHC isoforms did not emerge until 7 days of HS. One day of HS was sufficient to show significant decreases in mRNA levels of putative signaling factors serum response factor (SRF), suppressor of cytokine signaling-3 (SOCS3), and striated muscle activator of Rho signaling (STARS), although transcription factors yin-yang-1 (YY1) and transcriptional enhancing factor-1 (TEF-1) were not significantly affected by HS. The protein levels of actin and type I MHC were significantly decreased after 2 days of HS, and SRF protein was significantly decreased after 7 days HS. Our results show that after only 1 day of unloading, pre-mRNA and mRNA expression of muscle proteins and muscle-specific signaling factors are significantly reduced, suggesting that the downregulation of the synthesis side of the protein balance equation that occurs in atrophying muscle is initiated rapidly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.