Abstract
Using a semiporous plug of agar gel to support a sucrose density gradient column without restricting electrical conductivity, Massey and Deal [ J. Biol. Chem. 248, 56 (1973)] were able to use a conventional polyacrylamide gel electrophoresis apparatus to carry out single tube isoelectric focusing experiments in density gradients in only 2 hr using minute amounts (50 μg) of sample and very little ampholyte (0.18 ml); no cooling apparatus was required. In this work we report that 1) polyacrylamide provides a superior gel plug and 2) that ten isoelectric focusing tubes can easily be run simultaneously in a conventional polyacrylamide gel electrophoresis apparatus. In addition, the isoelectric points of eight proteins, with p I values ranging from 5.1 to 8.8 have been determined and the kinetics of the approach-to-isoelectric-focusing-equilibrium have been analyzed. Of special interest is the discovery that in the initial stages of focusing, in these sucrose density gradients, a major peak is formed at each end of the column; these two peaks migrate toward each other and finally coalesce into a single peak. Similar, although less pronounced, effects were previously observed by Catsimpoolas and Wang [ Anal. Biochem. 39, 141 (1971)] in focusing experiments in polyacrylamide gels. With all other conditions constant, the time required to reach equilibrium is 1) less in broad range (e.g., 3–10) pH gradients than it is in narrow range (e.g., 5–8) pH gradients and 2) generally greater with higher molecular weight substances than with lower molecular weight substances. Explanations are given for all of these kinetic phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.