Abstract
A new parallel MR imaging technique, which uses localized information from the elements of a multi-coil array to accelerate imaging, is described. The technique offers an alternative reconstruction approach to currently available techniques (e.g., SMASH and SENSE). Following a partial k-space data acquisition, image reconstruction in this approach proceeds in two steps: First, fitting the measured coil sensitivities to a set of partially localized target functions, a blurred intermediate image of the studied object is produced. Blurring is obtained in a systematic manner, forming images of the studied object convolved with a known convolution kernel. Full spatial resolution is then recovered by deconvolution of the blurred images with the known kernel function. The technique offers flexibility in the arrangement of the acquired signal data k-lines, and a mechanism for controlling reconstruction quality through the convolution the deconvolution procedure. The technique was validated in phantom and in vivo imaging experiments demonstrating high time reduction factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.