Abstract

The liquid mercury column can be rapidly transported from high temperature region to low temperature region in single walled carbon nanotubes (SWCNTs) driven by the temperature gradient. Interestingly, the total force acting on the mercury column keeps constant during the temperature gradient-driven process. The motion acceleration of the mercury column is linearly dependent on the magnitude of the temperature gradient. The meniscuses of the hydrophobic mercury column confined in SWCNTs do not appreciably affect the motion behaviors of the mercury column in our proposed model. The influences of the column length and the CNT diameter on the motion behaviors of the mercury column are considered to clarify the mechanism of the size effect. The motion acceleration of the mercury column nonlinearly decreases with increasing the column length and the CNT diameter. The overall oscillation of the SWCNTs plays the dominant role in rapid motion of mercury column for short-length mercury columns and small-diameter SWCNTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.