Abstract
The binding capacity and adsorption kinetics of a monoclonal antibody (mAb) are measured for experimental cation exchangers obtained by grafting dextran polymers to agarose beads and compared with measurements for two commercial agarose-based cation exchangers with and without dextran grafts. Introduction of charged dextran polymers results in enhanced adsorption kinetics despite a dramatic reduction of the accessible pore size as determined by inverse size-exclusion chromatography. Incorporation of neutral dextran polymers in a charged agarose bead results instead in substantially lower binding capacities. The effective pore diffusivities obtained from batch uptake curves increase substantially as the protein concentration is reduced for the resins containing charged dextran grafts, but are much less dependent on protein concentration for the resins with no dextran or uncharged dextran grafts. The batch uptake results are corroborated by microscopic observations of transient adsorption in individual particles. In all cases studied, the adsorption kinetics is characterized by a sharp adsorption front consistent with a shell-progressive, diffusion limited mechanism. Greatly enhanced transport rates are obtained with an experimental resin containing charged dextran grafts with effective pore diffusivities that are 1–9 times larger than the free solution diffusivity and adsorption capacity approaching 300 mg/cm 3 of particle volume.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.