Abstract

Rapid monitoring of fermentation quality has been the key to realizing the intelligent processing of black tea. In our study, mixing ratios, sensing array components and reaction times were optimized before an optimal solution phase colorimetric sensor array was constructed. The characteristic spectral information of the array was obtained by UV–visible spectroscopy and subsequently combined with machine learning algorithms to construct a black tea fermentation quality evaluation model. The competitive adaptive reweighting algorithms (CARS)-support vector machine model discriminated the black tea fermentation degree with 100% accuracy. For quantification of catechins and four theaflavins (TF, TFDG, TF-3-G, and TF-3′-G), the correlation coefficients of the CARS least square support vector machine model prediction set were 0.91, 0.86, 0.76, 0.72 and 0.79, respectively. The results obtained within 2 min enabled accurate monitoring of the fermentation quality of black tea, which provides a new method and idea for intelligent black tea processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call