Abstract
Rapid monitoring of fermentation quality has been the key to realizing the intelligent processing of black tea. In our study, mixing ratios, sensing array components and reaction times were optimized before an optimal solution phase colorimetric sensor array was constructed. The characteristic spectral information of the array was obtained by UV–visible spectroscopy and subsequently combined with machine learning algorithms to construct a black tea fermentation quality evaluation model. The competitive adaptive reweighting algorithms (CARS)-support vector machine model discriminated the black tea fermentation degree with 100% accuracy. For quantification of catechins and four theaflavins (TF, TFDG, TF-3-G, and TF-3′-G), the correlation coefficients of the CARS least square support vector machine model prediction set were 0.91, 0.86, 0.76, 0.72 and 0.79, respectively. The results obtained within 2 min enabled accurate monitoring of the fermentation quality of black tea, which provides a new method and idea for intelligent black tea processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.