Abstract
ABSTRACTThis work aimed to determinate eight beer properties using UV-Vis spectra in combination with principal component regression (PCR) or artificial neural network (ANN) models. A statistical experimental design was performed to generate the calibration data. First, principal component analysis (PCA) was applied to the original spectral data, and the scores in significant PCs were utilized to calibrate both models. PCR showed poor correlation for beer parameters (R2 < 0.61). The ANNs showed satisfactory correlations (R2 = 0.74–0.92) and low relative error considering a variable range (< 9%) for most of the beer-quality attributes, but vicinal diketones (R2 = 0.56, = 16.69%). Once implemented, this method would be fast and low cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.