Abstract

Dichlorodiphenyl trichloroethane (DDT) as an organochlorine compound has been globally used as a pesticide for controlling soil-dwelling insects and treating diseases such as malaria and typhus. The degradation products of DDT and its metabolites have also negative effects on the environment. The present study has investigated the determination of DDT and its metabolites in water sample using ion mobility spectrometry (IMS) as a rapid and sensitive detection technique. For this purpose, DDT and its metabolites were extracted using reverse phase solid-phase extraction (SPE) from water samples. The samples were then recovered by eluting with methanol and finally, quantified using the corona discharge IMS technique. Injection and oven temperatures and the effect of dopant were optimized as experimental parameters influencing both detection and determination efficiencies. Degradation of DDT in IMS drift tube was studied and reduced mobility values of DDT and its metabolites were calculated. The developed method was validated using water sample to obtain good results for the determination of DDT at low levels (1 ng ml−1) while spiked recoveries were obtained to be between 95.0–96.7%. The proposed method based on IMS proved to be a simple, inexpensive, rapid and sensitive procedure for the fast monitoring and determination of DDT and its main metabolites in water sample.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call