Abstract

AbstractIt is highly desirable to actively modulate the explosive performance and sensitivity of traditional explosives, such as RDX (hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine), and HMX (cyclotetramethylene tetranitramine), especially to reduce their explosive power and electrostatic sensitivity. Herein, a new avenue is found to effectively modulate the explosive performance and electrostatic sensitivity by direct irradiation of high‐density X‐ray from synchrotron radiation. RDX as a kind of popular and high‐performance explosive, is chosen to demonstrate the modulated effectiveness. After X‐ray irradiation with different irradiation time, the detonation velocity (DV), detonation pressure (DP), heat of detonation (HoD), and electrostatic sensitivity of RDX are determined. Compared with the electrostatic sensitivity and explosive parameters of original high‐quality RDX, the maximum electrostatic sensitivity value is increased to 1061 mJ after irradiation, which is an enhancement ratio of 39.61 %. The lowest DV is 7.57 km/s (−14.27 %), the lowest DP is 16.23 GPa (−53.20 %), and the lowest HoD is 5.15 kJ/g (−9.65 %). These changes mainly originate from the changes in the structure and crystal structure of RDX molecules after irradiation, as evaluated by Scanning Electron Microscope (SEM), X‐ray Diffraction (XRD), and X‐ray Photoelectron Spectroscopy (XPS). The mechanism of RDX modulation by X‐ray is due to denitrification, which always accompanies lots of energy releases, thus impacting the electrostatic sensitivity and explosive power of RDX. Therefore, this study not only provides a new method for reducing electrostatic sensitivity to improve the safety of storage, transportation, and application of RDX, but also holds great potential to reduce explosive performance by non‐contact means.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.