Abstract

Diblock and triblock copolymers of poly(styrene)-block-poly(1,2-butadiene) (PS/PB) and PS/PB/PS were modified by photochemical thiol–ene chemistry to process selected functional nanopatterned polymers, with reaction completion in 1 h. PB molecular weight (MW) and thiol–ene ratios were systematically varied based on a model monomer, boc-cysteamine, to determine the efficiency of the reaction. The results demonstrate the polydispersity index (PDI) of modified block copolymers significantly increased when low thiol–ene ratios were employed and sometimes induced gelation of the reacted polymers. Using a 10-fold excess of thiol, functionalizations between 60% and 90% were obtained for amines, carboxylic acids, amides, and a pharmaceutical with a pendant thiol. Differential scanning calorimetry showed a 30–60 °C increase in the glass transition temperature of the daughter polymers. Subsequently, these polymers were spin-coated from solvents found suitable to form self-assembled block copolymer films. The microstructure domain spacing for each polymer was consistent with those originating from the parent polymer. This technique described allows for the formation of nanopatterned block copolymer films with controlled chemistries from a single source material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.