Abstract

In this paper, the rapid mixing of deionized water and Fe3O4 ferrofluid in a Y-shaped microchannel using a permanent magnet is studied both numerically and experimentally. The microchannel has a rectangular cross section with 500μm in width and 1mm in depth. The process, assumed to be two-dimensional and steady state, is simulated by COMSOL numerical software. In the numerical simulation, the Maxwell equations are solved to obtain the magnetic potential. Then, the magnetic force can be calculated. Knowing the magnetic force, the momentum and transport-diffusion equations are solved. A setup is designed and fabricated to carry out the experiments. The mixing process is photographed by a CCD camera for 5min until the mixing process reached a steady state condition. The numerical results are compared with the corresponding measurements to validate the simulations. The effect of different parameters such as magnetic field’s strength (1280G, 2000G and 3000G), volume flow rate (30cc/min, 40cc/min, and 60cc/min), and mass fraction of nanoparticles (0.0125, 0.025 and 0.05) is investigated on the mixing efficiency. Applying magnetic field considerably improves the mixing efficiency of the micromixer and reduces the mixing length. Increasing the mass fraction of nanoparticles and magnetic field strength increases the mixing efficiency until the magnetization of the ferrofluid reaches its saturated level. Increasing the fluid flow, however, lowers the mixing efficiency and increases the mixing length.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.