Abstract

Kratom (leaves from Mitragyna speciosa Korth.; Rubiaceae) is a herbal medicine known for its analgesic properties and psychoactive effects. Kratom in Thailand is currently legal; however, it is prohibited in some countries and considered a narcotic plant. Our aim was to establish a reliable, simple, and rapid method for quantifying mitragynine in Kratom leaves and related products through a combination of high-performance thin-layer chromatography (HPTLC) and densitometry. A densitometric HPTLC method was developed and validated in terms of specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, precision, and robustness. The fingerprints of kratom leaves, Mitragyna spp., and related products were constructed. For HPTLC, samples were applied to silica gel 60 F254 plates, and the mobile phase comprised n-hexane, ethyl acetate, and triethylamine (1:1:0.15, v/v/v). Densitometric detection was carried out under ultraviolet light at a wavelength of 226 nm. The validated method exhibited a range of 14.31-143.10 μg/mL, yielding a correlation coefficient of 0.9993. Spiked recovery rates were within a range of 98.3%-100.9%, and the LOD and LOQ were 3.80 and 11.53 μg/mL, respectively. Kratom samples were analyzed with the developed method, and the correlation coefficient was 0.9641, compared to the high-performance liquid chromatography-diode-array detection (HPLC-DAD) method. The HPTLC fingerprints displayed a distinctive pattern, facilitating discrimination among different plant parts and Mitragyna spp. The established method offers the advantages of simplicity, ease of use, and speed of analysis, serving as a practical alternative for mitragynine quantification in kratom leaf and its related products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.