Abstract

Jumping spiders (Salticidae) do not rely on webs to capture their prey, but they do spin a silk dragline behind them as they move through their habitat. They also spin this dragline during jumps, continuously connecting them with the surface they leapt from. Because spiders cannot spin silk in advance, this silk must be spun at the same speed as the spider jumps - in effect, requiring spin speeds over ten times faster than typical. And while many spiders can move rapidly, for example when running or rappelling, previous research on silk has found that silk spinning rates in excess of walking and web-building speeds (∼2-20 mm/s) result in lower quality silk and even dragline failure1. Here we report that, despite being spun at high speeds (∼500-700 mm/s; 100-140 body lengths/s), jump-spun salticid silk shows consistent, uniform structure as well as the high-performance qualities characteristic of silk spun by other spiders, including orb-weaving species, at low speeds2. The toughness of this jump-spun silk (mean = 281.9 MJ/m3) even surpasses reported values for all but the toughest orb-web draglines2. These results show that salticids are capable of spinning high-performance silk and are able to do so extremely rapidly under natural conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.