Abstract

Highly crystalline and high aspect-ratio ZnO nanotetrapods were grown by a novel and swift microwave synthesis. FESEM analysis revealed that each tetrapod has four thin arms and are derived from the midst of the crystal. The diameter of each arm is larger at the base and smaller at the tip. Structural analysis revealed that these nanotetrapods are single crystalline and have a wurtzite hexagonal crystal structure. These ZnO nanotetrapods were used for the detection of BPA. The electrochemical sensor based on the ZnO nanotetrapods modified electrode showed electrocatalytic activity in terms of significant improvement of the anodic current of BPA and lowering of the detection limit. Under optimized conditions, the squarewave oxidation peak current of BPA was linear over the concentration range of 12.4 nM to 1.2 μM with the detection limit of 1.7 nM and sensitivity of 5.0 μA nM(-1) cm(-2). This sensor showed high sensitivity and response compared with other electrochemical sensors reported for the detection of BPA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call