Abstract

Spinel Co3O4 nanospheres have been synthesized by the microwave-assisted hydrothermal method. The N-doped graphene nanosheets (NGN) were synthesized using Hummer’s method. The prepared spinel Co3O4 and NGN were mixed under certain proportions using an ultrasonication process and treated with microwave radiation to prepare a novel spinel Co3O4 nanospheres infused NGN. The synthesized samples were characterized by x-ray diffraction, Raman spectroscopy, Zetasizer, scanning electron microscope/transmission electron microscopy and x-ray photoelectron spectroscopy for identifying crystal structure and phase, particle size, and the morphology of the nanostructure and the elemental configuration, respectively. The prepared spinel Co3O4/NGN were used as anode material and lithium metal as a reference electrode to fabricate half cell using Swagelok cell components. The electrochemical properties were studied and found to exhibit a larger specific capacity of 575 mAh g−1 compared to traditional graphite electrodes, after 100 cycles under 0.1 C rate with a coulombic efficiency of ≈100%. The good electrochemical properties ascribe to the distinctive surface morphological nanostructures of nanoporous nanospheres of spinel Co3O4 nanospheres and nanosheets of N-doped graphene that reduce the lithium-ion diffusion pathway. The developed anode material would be a potential electrode for lithium ion battery applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.