Abstract

Sodium-ion batteries are commanding increasing attention owing to their promising electrochemical performance and sustainability. Organic electrode materials (OEMs) complement such technologies as they can be sourced from biomass and recycling them is environmentally friendly. Organic anodes based on sodium carboxylates have exhibited immense potential, except the limitation of current synthesis methods concerning upscaling and energy costs. In this work, a rapid and energy efficient microwave-assisted synthesis for organic anodes is presented using sodium naphthalene-2,6-dicarboxylate as a model compound. Optimizing the synthesis and electrode composition enables the compound to deliver a reversible initial capacity of ≈250mAhg-1 at a current density of 25mAg-1 with a high initial Coulombic efficiency (≈78%). The capacity is stable over 400 cycles and the compound also exhibits good rate performance. The successful demonstration of this rapid synthesis may facilitate the transition to preparing organic battery materials by scalable, efficient methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.