Abstract

Invasive species represent an increasing threat to native ecosystems, harming indigenous taxa through predation, habitat modification, cross-species hybridization and alteration of ecosystem processes. Additionally, high economic costs are associated with environmental damage, restoration and control measures. The Burmese python, Python molurus bivittatus, is one of the most notable invasive species in the US, due to the threat it poses to imperiled species and the Greater Everglades ecosystem. To address population structure and relatedness, next generation sequencing was used to rapidly produce species-specific microsatellite loci. The Roche 454 GS-FLX Titanium platform provided 6616 di-, tri- and tetra-nucleotide repeats in 117,516 sequences. Using stringent criteria, 24 of 26 selected tri- and tetra-nucleotide loci were polymerase chain reaction (PCR) amplified and 18 were polymorphic. An additional six cross-species loci were amplified, and the resulting 24 loci were incorporated into eight PCR multiplexes. Multi-locus genotypes yielded an average of 61% (39%–77%) heterozygosity and 3.7 (2–6) alleles per locus. Population-level studies using the developed microsatellites will track the invasion front and monitor population-suppression dynamics. Additionally, cross-species amplification was detected in the invasive Ball, P. regius, and Northern African python, P. sebae. These markers can be used to address the hybridization potential of Burmese pythons and the larger, more aggressive P. sebae.

Highlights

  • As the number of invasive organisms steadily increases, the development and implementation of effective management actions will require knowledge of discrete breeding populations, dispersal patterns and fluctuations in population size

  • Dinucleotide microsatellites with ≥10 repeated motifs were contained in the most sequences

  • Within sequences suitable for primer design, tetranucleotide microsatellites with ≥10 repeats were contained in the largest number of loci (Table 1)

Read more

Summary

Introduction

As the number of invasive organisms steadily increases, the development and implementation of effective management actions will require knowledge of discrete breeding populations, dispersal patterns and fluctuations in population size. Operational protocols, methods and tools could improve these rapid-response control and eradiation actions One such tool, generation sequencing (NGS), can rapidly and cost-effectively generate microsatellite markers to help track invasion dynamics and pathways, determine the genetic relationships of native and invasive populations and improve rapid-response containment or removal efforts [1,2,3]. DNA sequencing represents an efficient and cost-effective method for identifying large numbers of microsatellites, especially in non-model organisms with limited genomic information. In order to develop highly informative molecular markers, Roche 454 pyrosequencing was used to rapidly generate low-cost, long-read and species-specific microsatellites to inform management of the invasive Burmese python, Python molurus bivittatus, classified as Python bivittatus [16]. Burmese pythons are believed to be interspecific competitors with the federally threatened indigo snake, Drymarchon couperi, already imperiled by habitat loss and fragmentation [24]

Results and Discussion
F: ATGCCAAGGTATCAGGGCTC
Sample Preparation and 454 Pyrosequencing
Marker Selection
Marker Optimization
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.